
labs project reader’s project

www.elektormagazine.com January & February 2017 71

It is not only mystics who wonder whether there exists some
universal consciousness that connects us all together and lets
us communicate subconsciously with one another. Thanks to a
project run from Princeton University using a collection of ran-
dom number generators spread all over the world, we may now
have some signs that there may be a connection between human
consciousness and the behavior of electrons in a noisy pn-junc-
tion (see text box). Since I had just finished soldering together
a simple random noise source for my home-built analog syn-
thesizer, I hit upon the idea of trying to reproduce the Princeton
experiment with my own hardware and software.
Random numbers produced by a computer are just the results
of mathematical calculations, and so are in fact deterministic, or
‘pseudo-random’. Such numbers are not suitable for this project:
instead we must use an analog method to generate the numbers.
One approach is to process the noise created by the electrons
in the pn-junction of a reverse-biased diode. If this noise volt-
age is amplified and fed into an analog-to-digital converter, we
will obtain a steady stream of unpredictable random numbers.

The project
The hardware I designed consists of a simple noise source
whose output signal is fed into an Arduino microcontroller. The

Arduino passes the random numbers derived from the analog
source to a PC over USB, where they can be displayed graphi-
cally. The PC software has no pretensions to completeness and
interested readers are encouraged to extend it. Both the source
code for the PC program and the Arduino sketch are available
as a free download from the Elektor Magazine website [1].

Hardware
The circuit of the noise source is shown in Figure 1. The noise
originates in the reverse-biased base-emitter junction of tran-
sistor T1. This extremely weak signal has its DC component
removed by C1 and is then amplified by IC1. The noise signal,
now symmetric about zero, is taken via capacitor C2 to summing
amplifier IC2, where a voltage set by P2 is added to ensure
that the output is always positive. This is required because
the analog inputs of the Arduino can only work with positive
voltages. Preset P1 can be used to adjust the amplitude of the
noise signal. You can use an oscilloscope to set the average
level of the signal to about +1.4 V and the amplitude to about
1 VPP (an accurate measurement of these parameters of the
noise signal is not possible). The output of the noise source
can now be connected to the input of the Arduino.
Figure 2 shows how the noise signal is fed into the Arduino:

Analog Random Numbers
Using an Arduino and a noise source
By Kurt Diedrich (Germany)

It’s easy enough these days to generate random numbers digitally using a computer program. But there is
also an analog approach: the project described here processes the noise produced by a transistor junction
using an Arduino. The random numbers so generated can be used in various interesting experiments and
will even lead us a little into the world of mysticism.

IC1
2

3
6

7

4

1

5

8
OP07

IC2
2

3
6

7

4

1

5

8
OP07

R3
10M R5

100k

R2
10k

R1

10
M

R4

47
0k

P1

500k

C1

4n7
C2

3u3

P2

100k

T1

BC547B

C3

4u7

C4

4u7

+15V

–15V 150831 - 11

GND

DIGITAL (PW
M ~

)

ANALOG IN

ARDUINO

Noise
Generator

PC via USB

TX 1
RX

150831 - 12

0

RESET
IOREF
NC

POW
ER

AREF

3.3V

GND

SCL
SDA

GND
GND

AN5
AN4
AN3
AN2
AN1
AN0

GNDGND

–15V

+15V

AN0

VIN

~ 11

~ 10

13
12

5V ~ 9

~ 6

~ 5

~ 3

8

7

4

2

USB

Power

Figure 1. The circuit of the noise source uses a transistor and two
operational amplifiers.

Figure 2. Connections between the power supply, the Arduino and the noise
source.

learn design share

72 January & February 2017 www.elektormagazine.com

an Arduino Uno is used in this case. There are two connec-
tions: first, the signal connection, which is taken to analog
input A0 of the Arduino; and second, the ground connection.
The noise source can be powered from any suitable external
2 x 15 VDC power supply. The Arduino is powered from the
PC over the USB cable.

Software
As already mentioned, two separate pieces of software are
needed in this project: one running on the Arduino and one on
the PC [1]. The program running on the PC is written in Pro-
cessing. The Processing programming environment (which so
far I have only used under Windows XP and Windows 7) can
be downloaded from the Internet free of charge [2]. A Pro-
cessing file must always be placed in a directory that has the
same name as the program file itself.

It is very important to ensure that you enter the correct COM
port number in the setup part of the Processing code so that
the Arduino is recognized by Windows. You can find the correct
number using the Device Manager. For example:

serport = new Serial(this, “COM3”, 115200);

Unfortunately it can happen that the port number changes by
itself while you are experimenting with the system.
After using the Arduino IDE to flash the sketch into the Arduino,
it can be connected to the PC and then the Processing program
can be launched. After a brief delay the signal should appear on
the screen in the upper graph window (see Figure 3, above),
and it should be symmetric about the horizontal center line. If
it is shifted or if the amplitude is not correct, P1 and P2 must
be adjusted. Below we will describe how you can fine-tune
these settings using the software.

Operation

Upper graph window

The points shown in the upper graph window represent the
random sample values received from the noise source. Every
second approximately thirty of these values are received from
the Arduino. Filling the window takes about ten seconds, cor-
responding to about 300 samples per pass that are available
for further processing.

Lower graph window
Two curves slowly build up in the lower window, one green and
one purple. Each time the upper window is filled each of these
curves is extended by one pixel. The curves are produced from
the random sample values as follows.

Purple curve (mode 2)
The program checks whether the current sample value of the
noise signal is even or odd, and respectively increments or dec-
rements a variable. Then the value of this variable is plotted.

Green curve (mode 1)
If a sample is above the horizontal center line a variable is
incremented; if it is below the center line, it is decremented. It
is not easy to set the offset potentiometer in the hardware suf-
ficiently accurately, and in any case the offset will vary slightly
with temperature, and so a calibration process is required. The
calibration buttons help with this.

Calibration buttons
These are the two buttons towards the top of the display, which
can be used to make vertical adjustments to the horizontal
line in the upper graph window that divides the positive sam-
ples from the negative ones. Depending on this setting, the
green curve in the lower graph window will either run hori-
zontally or will trend up or down. The offset potentiometer in
the noise source should be adjusted so that the green curve
runs as horizontally as possible when the threshold position is
set to 150 using the buttons. In this case the random points
displayed in the upper graph window should appear to be per-
fectly symmetric with respect to the center line. The threshold
value of 150 appears among the variable declarations in the
Processing code, as follows:

int limit = 150 ;

If a different value suits your hardware better, you can mod-
ify the code.

Divider buttons
The next two buttons down allow for the expansion and com-
pression of the curves in the Y direction, to allow them to be
analyzed in greater detail. The two numbers shown at the top
of the display are the most recent values plotted on the curves.

Files and ‘LOAD FILE’
Normally every thirty minutes a file is created storing the data
represented by the curves in the lower graph. These files are
saved in the same directory as the Processing program. The
file name is determined when the program is started and con-
sists of the time and the date when the program was started.
The time interval between files being saved can be adjusted
by modifying the variable declarations in the code: details on

Figure 3. User interface presented by the program, which automatically
starts collecting data when it is launched.

learn design share labs project reader’s project

www.elektormagazine.com January & February 2017 73

how to do this are given in the program.
Clicking on ‘LOAD FILE’ brings up a file selection dialog where
you can navigate to any previously-saved file and reload it.

Display current data / Display loaded file
The data plotted in the lower graph can be changed by clicking
on the two buttons ‘Display current data’ or ‘Display loaded
file’. When the plot is changed to ‘Display current data’ it is
not updated until the plot in the upper graph reaches its right-
hand edge.

The figures below the buttons show the coordinates of the
mouse pointer when the mouse button is pressed. This is a
useful tool to have when adding new elements to the user
interface design.

Interpretation
Of course the plotted curves are open to various interpretations.
When you launch the program you will notice that, although
there are many deviations of small magnitude, the overall
trend of each curve is firmly in one direction. The tiny jagged
deviations are a natural consequence of the random nature of
the noise generator; they can also be caused by temperature
changes. However, if the curve should suddenly show a clear
change in direction from its previous average trend, perhaps
something is afoot! Perhaps you might want to take a quick
look at your favorite news website to see what is going on...

On the other hand, you might prefer to spend your time mod-
ifying the processing program to display and analyze other
types of data more obviously influenced by the outside world,
such as readings from a temperature sensor!

(150831)

Web Links

[1] www.elektormagazine.com/150831

[2] https://processing.org/download/

Spooky action at a distance
Since the end of the 1990s a research group at Princeton
University has been conducting a study, called the Global
Consciousness Project, or GCP, that collects and evaluates
data generated by seventy random number generators
located all around the world.
In theory the distributions of numbers from these generators
should all be identical. For example, if the plot of noise
sample values is shifted so that they are symmetrical about
the zero line then occurrences of positive and negative values
will balance when analyzed over a sufficiently long time
period. The consequence of this is that the plot obtained
by accumulating a fixed number of these values should
wobble about the zero line; if the shift is not exactly correct
then the plot will drift at an approximately constant rate in
one direction or the other. In rare cases the researchers at
Princeton observed significant disturbances to this delicate

balance when an event of global significance occurred that
had an emotional effect on a large fraction of human beings:
the events of 11 September 2001, the death of Princess
Diana, or the Madrid attacks. In all these cases the readings
collected showed deviations from their expected properties.

Further information on the background of this research, as
well as criticism of it, can be found at the following sites:
http://global-mind.org
http://global-mind.org/results.html#alldata
http://global-mind.org/control.distribution.html
http://noosphere.princeton.edu/story.html
http://subroutine.jimdo.com (author’s website, partly in 		
	 English, mostly in German)

Notes on the Processing code

The code might at first sight seem rather complicated. This is
because Processing does not have a built-in way to construct
graphical user interfaces for programs. All buttons and text
labels, and all the mouse events that connect together to
form such an interface, must be written as ‘normal’ source
code. However, the result works well and the payback for the
complexity of the code is that graphics handling in Processing
is astonishingly quick. I have added thorough comments

to the source code wherever required. Readers interested
in programming in Processing will find many interesting
ideas in the listing, such as how buttons and text labels are
programmed, how to display the contents of an array as a
plot in a graphics window, store them to a file and read them
back again, how to determine the time and how to create a
file selection dialog.

Listing 1. Arduino sketch (excerpt).

void setup()
{
 Serial.begin(115200);
}

void loop() // Endlosschleife
{
 int sensorValue = analogRead(A0);
 Serial.println(sensorValue);

	EN2017010011
	EN2017010031
	EN2017010041
	EN2017010061
	EN2017010071
	EN2017010081
	EN2017010141
	EN2017010151
	EN2017010211
	EN2017010241
	EN2017010261
	EN2017010301
	EN2017010311
	EN2017010321
	EN2017010401
	EN2017010421
	EN2017010461
	EN2017010501
	EN2017010561
	EN2017010601
	EN2017010661
	EN2017010711
	EN2017010741
	EN2017010851
	EN2017010921
	EN2017010941
	EN2017010981
	EN2017011011
	EN2017011061
	EN2017011081
	EN2017011121
	EN2017011141
	EN2017011151
	EN2017011181
	EN2017011191
	EN2017011201
	EN2017011221
	EN2017011241
	EN2017011251
	EN2017011281
	EN2017011301
	Adverts EN 2017 Jan:Feb

